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Abstract. This article proposes applying the variation of information measure from Information
Theory to evaluate macro-level properties characterising dynamic networks. This measure is used to
evaluate different clusters given by the agglomerative hierarchical clustering algorithm of Clauset,
Newman and Moore (2004), concerning a case study of the multi-agent based network model of a
university email service. The variation of information measure is shown to be capable of assessing the
outcome of simulating the dynamics of networks, in terms of its macro-level properties.
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1. Introduction

Informal communication networks, arising from the interactions of a multitude of
individuals, have a role in solving problems and in sharing knowledge between members
of organisations (Tyler, Wilkinson, & Huberman, 2003). Informal communication
networks are frequently characterised by some sort of auto-organisational phenomena.
Typically appearing social structures are communities or modules, defined as having a
higher density of connections between members than the density of inter-module
connections (Girvan & Newman, 2001). The study of these community dynamics,
including analysis, characterisation of main features, and prediction of their evolution, is
becoming more and more relevant for the understanding of human social behaviour.

The study of community dynamics implies some methodological options. One of them
concerns what to observe when studying network dynamics. An idea is to apply
community detection algorithms to data sets representing different moments in time. This
allows depicting communities’ evolution from real data sets. We argue that, in this
context, simulation models can be designed and used to predict the evolution of
community configurations. An important issue is, then, how to evaluate the quality of the
simulation results. We propose to use metrics from Information Theory, namely the
variation of information measure (Meila, 2007), allowing to calibrate a simulation model
from real data, and to assess the macro-level properties of the resulting communities.

This article starts by reviewing the most relevant community detection algorithms,
focusing on hierarchical algorithms based on modularity. Particularly, some previous
work on the realm of email community detection is referenced. Then, the case study of a
university email network is depicted. The email communication network of the Lisbon



University Institute is transversal to the hierarchical structure of the organisation, and
characterised by the existence of diverse informal communities. Results from this
modelling are used to test how the metric of variation of information can be applied to
clustering analysis. Finally, a multi-agent simulation based on the email network is
presented. The variation of information measure is then used to assess the clustering
property on the simulation results vs. the observed email network dynamics.

2. State of the art

This section presents the theoretical concepts used in this research, namely: (1) the
domain of community detection algorithms, with a particular focus on hierarchical
clustering techniques, (2) the research found in the literature concerning applying
community detection to email networks, and (3) the variation of information
measure, from Information Theory, that we apply to the measurement of distance
between clusters.

2.1 Community detection algorithms

Community detection can be very useful in performing an exploratory analysis of data, and
its usage transverses several domains, from statistics to computer science, biology to
psychology. In every scientific domain it is necessary to deal with empirical data. One of the
first classifications that one tries is to group the data according to some property that might
manifest itself similarly inside the groups. Several algorithms and techniques have been
devised to accomplish this partitioning, allowing for a variety of solutions. Some methods
are robust, and can be used effectively to classify groups within heterogeneous sets of data.
On the other hand, some algorithms are specific to certain problems, and require particular
initial conditions (Shortreed, 2006).

Network clustering techniques can be divided into global or local classes of algorithms.
Local algorithms use some local pattern to determine which points belong to each cluster.
For instance, clique percolation (Palla, Derényi, Farkas, & Vicsek, 2005) uses the notion of
clique to identify groups or modules. In global strategies, the network is taken as a whole
and a general property is used to divide the network, separating all its members into
clusters. One example is hierarchical clustering techniques, like the Girvan-Newman
algorithm (Girvan & Newman, 2001), using edge betweenness as the property of interest.
These techniques are discussed in the following paragraphs.

Hierarchical clustering is a type of partitioning strategy that produces a dendrogram from
the breaking down of a complete graph. Two subclasses of this type of partitioning are
available, according to the way the dendrogram is built. One concerns a bottom-up
approach, where firstly each node is considered a member of its own community, and then
the process runs iteratively, merging communities according to some maximal value of a
quality function. These are called hierarchical agglomerative methods. Another alternative
is the divisive methods of hierarchical clustering, where all nodes belong to one single initial
community. The dendrogram is designed by breaking the communities iteratively into sub-
communities, up to the point where all nodes are attributed to communities with one node.
The way divisions are made is based on the ‘optimal’ value of some property, usually one
that measures the strength of connections between communities. This subclass of
hierarchical clustering methods is known as hierarchical divisive.



Two examples of hierarchical clustering methods are the Girvan-Newman algorithm (GNA)
(Girvan & Newman, 2001), and the Clauset-Newman-Moore algorithm (CNM) (Clauset et al.,
2004). The former is a hierarchical divisive algorithm, while the latter is agglomerative.
GNA uses the edge betweenness to determine which edges can be safely removed from the
network and iteratively removes them, splitting the network into sub-networks to construct
the final dendrogram. The point in the dendrogram where the ‘optimal’ cut is achieved is
then given by a property called modularity (Newman & Girvan, 2003). This property is
based on the notion of assortative mixing, describing the fact that some networks present a
tendency for connecting vertices to other vertices that have some sort of similarity
(Newman, 2002). In CNM, the modularity itself is used as the measure to determine which
sub-communities to join, and from all different joining possibilities, it chooses the one
which presents the maximal value of modularity. The ‘optimal’ point at which to cut the
dendrogram is then where the value of modularity is maximal (Clauset et al., 2004). Both of
these algorithms use the notion of modularity to determine the optimal point at which to
cut the dendrogram (Newman, Barabasi, & Watts, 2006; Newman, 2006).

2.2 Community detection in email networks

The community detection algorithms presented above have been designed to analyse
different types of data. One of these types concerns informal communication networks,
namely email networks. Research found in the literature describes the use of community
detection algorithms, aiming to distinguish specific kinds of messages, like spam, and more
generally to identify the informal structure of email networks.

One of the greatest interests in email classification approaches is due to the necessity for
filtering email to avoid the spread of spam. Several methods for the detection and
elimination of spam messages have been proposed: tests based on semantic analysis,
Bayesian tests, black lists and white lists. These methods can give good results, but created
another problem: false positives (Garriss et al, 2006). A different approach, recently
employed, takes advantage of the knowledge that one might have of the social structure that
the user is in. This technique, proposed by Kim (2007), uses a spectral decomposition of the
Laplacian matrix, built from the headers of the messages received in the user’s inbox. From
this decomposition of the network of contacts into sub-networks, each of the sub-networks
is classified according to its clustering coefficient. Kim states that sub-networks where the
clustering coefficient is high can be classified as spam-free. In his tests, the author achieved
100% accuracy in the classification of emails from a test data set. Besides the natural
interest in detecting and classifying spam email, the spectral decomposition analysis can be
directed to legitimate email traffic, in order to find other kinds of properties that emerge
from the exchange of messages.

In a study made at the Hewlett-Packard Labs, Tyler et al. (2003) conducted an analysis of
the email logs to detect the informal structure of the relations and interests networks that
were formed. With this study the authors tried to understand the dynamics of information
inside the company laboratory. Informal networks were shown to coexist along with the
formal organisational structure, serving the organisation at different levels, like conflict
resolution or the definition of internal projects. It was also found that informal
communication networks work as a means of learning and knowledge transmission inside
the company. Due to the value that these communities present for organisations, an
automated method was developed that identifies sub-networks. A set of email logs was
used, including one million exchanged messages over a period of two months. A minimum



of messages between two people was defined in order for the existence of a connection to
be accounted for. This minimum number of messages between any two vertices defines the
threshold that one can vary to construct the graph. The graphs constructed in this manner
were found to have a power-law for high thresholds. The algorithm used to divide the graph
into modules was based on Freeman’s betweenness (1977) applied to the edges. This is
similar to the Girvan-Newman algorithm (Girvan & Newman, 2001).

Also concerning the detection of informal structures, Ebel et al. (Ebel, Mielsch, & Bornholdyt,
2002), at the University of Kiel, studied an email network from the logs of email servers for
a 112-day span. Each node of the networks corresponds to a student, and the connections
put in evidence the passing of messages between them, with an average degree of 2.88. Also,
it was verified that the degree distribution falls under a power law with an exponential
behaviour in the tail of the distribution (for degree>100). The power law had an exponent
of 1.81. When measuring the clustering of the network, the authors found that the network
had a neighbourhood effect due to the emails exchanged with the outside of the network,
lowering the clustering values, but still one or two orders of magnitude greater than the
expected value for random networks with equal degree distribution.

In this work, hierarchical clustering methods were used to create a clustering from the
graphs that result from the simulation model, and then this clustering was used to calculate
the variation of information from the real known clustering. The variation of information
method is described in the following point.

2.3 Variation of information as a measure of clustering distances

The need to assess how appropriate the result of a partitioning procedure is leads to
the idea that some sort of measure is needed. This measure should be capable of
giving information when applied both to real data and to simulation results.
Information based measures are appropriate if one wants to find how similar two
different clusters are. In particular, aiming to empirically assess the quality of a
clustering algorithm by comparing it to a know reality, one needs to define a
distance or a measure on the space of the data set (Meila, 2007).

We propose to use the measure called variation of information (VI), which allows
measuring the amount of information lost and gained in changing from clustering C
to clustering C’ of the same data set (Meild, 2007). The following paragraphs present
the variation of information measure, synthesising a more detailed description by
Meila (2007).

Considering one partitioning C, the probability that a node £ belongs to a cluster Cy is
given by the equation (1) where 7y is the number of nodes in the cluster Cy and 7 is the
total number of its elements.

P(k) =& )
n

The uncertainty associated with this measure is given by the entropy of the variable P(k)

H(C) ==Y, P(k)log(P(k)) (2)

k=1



where H(C) is the entropy associated with the clustering C. This is always a non-negative
value, being zero when there’s no uncertainty. The mutual information between two
clusterings, Cy and C ’k, represented by /(Cy,C ’k), means the information that one has over
the other. The mutual information is given by the probability P(k,k'), representing the
probability that a node belonging to the cluster Cy is in the cluster C .

c.NC|
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Using expression (3), the mutual information /(C,C ) is defined as the mutual information
associated with the two random variables £ and £

P(k,k")

[(C,C" = EEP(k,k')logW
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(4)

Meila (2007) proposed variation of information (VI) as a criterion to compare both
clusters:

VI(C,C") = H(C) + H(C") - 2I(C,C") (5)

This measure is a metric; since it is always non-negative, it is symmetric and presents
triangular inequality. The variation of information can be normalised, taking into account
the conditions of the clusters. If the normalisation concerns the same data set, we obtain

|
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V(C,C") = VI(C,C") (6)

where n is the number of nodes. If the normalisation does not concern the same data set,
but still has the same number of clusters in both clusters, it is possible to normalise the
variation of information via

1
V.(C,C")Y=—""7FVIC,C' 7

where K* is the number of clusters in each cluster.

The variation of information criterion for comparing two clusterings of a data set is
derived from information theoretic principles. VI makes no assumption about how the
clusterings may be generated, and requires no rescaling to compare values of the two
clusterings C and C’. Also, VI doesn’t directly depend on the size of the data set. These
qualities allow using the VI measure when comparing across different data sets and
different clustering algorithms.

In this review of the state of the art, we show some of the principles and methods used in
community detection, namely those used in email networks, and present one information-
based measure for the comparison of partitioning methods. The following section
presents the application of this measure to a case study, assessing results of the
partitioning obtained by the community detection algorithms above. Then, a multi-agent
model for simulating the communication network composition process is presented. The



variation of information measure is then used to assess the behaviour of the simulation
via the partitioning.

3. Modelling structural dynamics in email networks

Our proposal aims to show how variation of information can be used to assess the results
of multi-agent simulations. For this, we developed a multi-agent model of the university
email system, to represent the process of forming a communication network between
professors. Real data was collected from the logs of email servers for a period of 62 days.
From this data the logs where anonymised under a privacy directive of the institution, and
then the teacher network was drawn up. The teacher network was considered undirected
and was composed of 395 nodes with a density of 2.69%. This network was then
analysed through the community detection algorithm proposed by Clauset, Newman and
Moore. The model includes the possibility of using real data as training. We also assess
the influence of the social neighbourhood of the nodes in the structure of the network.

3.1 Results from detecting communities in the communication network

Two global hierarchical clustering algorithms were used to analyse the professors’
communication network: the Girvan-Newman and the Clauset-Newman-Moore algorithms.
Both use modularity as a quality function for the partitioning. Investigation of the
overlapping communities was done via the clique percolation algorithm, and a k-core
analysis was also carried out to find hierarchical clusters inside the teachers’ network. The
results are summarised in Table 1.

Table 1 — Analysis of the teacher network for different clustering methods

Method Groups Modularity (Q)
Girvan-Newman 14 0.588
Clauset-Newman-Moore 7 0.585

The number of departments/sections in the university log files is 14. The Girvan-
Newman algorithm found the same number of components. However, the Clauset-
Newman-Moore gave only seven communities. Both of the algorithms had a
maximal value of modularity (Q) near 0.6 (0.588 for the former and 0.585 for the
latter) and presented communities that didn’t match exactly those defined by the
departments of the university, indicating a transversal communication process.

Both algorithms were compared with the real clustering of the university
departments. The results for the variation of information and the equivalent random
clustering value are shown in Table 2. The equivalent random clustering is obtained
by keeping the same number of clusters and maximising the uncertainty by equally
distributing its members.



Table 2 — Comparison of Variation of Information of two clustering algorithms with respect to the
real departments of the Lisbon University Institute

Clustering Variation of Information (V)
Girvan-Newman 0.224
Equivalent random clustering 0.833
Clauset-Newman-Moore 0.236
Equivalent random clustering 0.718

Table 2 shows that both algorithms are approximately at the same distance from the
departmental clustering of the university. Also, the low values for the normalised
variation of information (V), when compared to equivalent random clustering, reveal
that the clustering algorithms produced clusters very close to the real departments
found at the university. Differences are due to cross-department communication,
and this has been verified in other research (Rodrigues, 2009) via the clique
percolation method (Palla et al., 2005).

3.2 Training mode vs. free regime

We designed a multi-agent that captures the informal communication network
formation between professors at the Lisbon University Institute. The model is
founded on a real data set, and intends to predict the structural dynamics of the
network. Initially the model is populated with the number of professors equal to
those in the training set. Each of these professors will have an empty contact list,
and during the subsequent phases they are trained with real data, reproducing the
behaviours of the training set. The notion of time is given by a sequence of events. At
each step only one event, for instance the sending of one email message, is
reproduced.

At the end of each time step, the number of previous contacts of each professor is
updated. Also, a probability of contacting any of the agent contacts is updated
according to the previous contact’s cardinality. This process goes on during the
training phase of the model. When this phase is exhausted, the model starts evolving
in a free regime, where at each time-step one agent will be given the opportunity to
produce an event. Events are then governed by the principles of high transitivity,
assortative mixing and random events, described as follows:



High transitivity

A high value of clustering indicates the existence of a high number of triangles in the
network. The formation of a high transitivity network was accomplished through
the inclusion of the idea of social neighbourhood. This distance allows including all
the agents falling under a certain geodesic distance in a list of professors to contact
when a certain event occurs. For example, consider three agents: ego, alterl and
alter2. alterZ is at a distance d from ego and 1 from alter1. A simple rule to account
for the probability of establishing a contact between ego and alterZ is defined as:

" 1
pego,alterZ = ? pa/terl,alterZ (8)

The value of p* represents an adjustment of the probability of connection over a
certain distance. The parameter a is a measure of how distance influences this
probability. To calculate this probability over all possible geodesic paths, the

probabilities of connection assuring that Epz,=1 are normalised, giving the

normalised probability p;;:

EGeoPath pi‘l (9)

PSSl
k GeoPath pi’l

Assortative mixing

The idea that agents prefer to connect other similar agents is achieved through the
value of their degree. For a set of agents X=<xj, .., x,> with a degree distribution
<ki,... ,kn> and a historical probability distribution <pj,..,pn> the corrected
probability pc for the connection between agents i and j is given by:

Pj
l+k -k,
pe;; = ) (10)

p.
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Random Events

The coupling of the sub-models through transitivity and assortative mixing isn’t
enough to guarantee obtaining a large network component. This happens because
both sub-models only allow connections between nodes that are already connected
(degree >0). This implies that new connections won'’t be created to isolated nodes. It
is then necessary to introduce a residual probability of, for each event generated,
the possibility of connection to/from someone with degree zero.



These three principles of high transitivity, assortative mixing and random events
comprise the rules by which each agent acts when the simulation is placed under a
free regime. This means that, when agents are given the opportunity to generate an
event, they act according to these principles. First they define a set of other agents
that they might contact, based on the social neighbourhood. The probabilities of
contact are established according to the transitivity principle, and the historical
number of contacts. Then these probabilities are corrected, taking into account the
assortative mixing principle. From the final corrected probabilities an event is
generated. Finally, agents apply the random event principle for the residual growth
of the network. This is done when the simulation is in free regime. Otherwise, in
training regime the agents limit themselves to reproducing events of the training
set, and update the historical number of contacts accordingly.

The outcome of this model is presented in the next section, where the training set
was defined as a fraction of the total data and the model was tested for different
social neighbourhoods.

4. Results and analysis

The model was run to test the influence of social neighbourhood and the influence of
the training set in the final results. The resulting network degree, average path
length, and clustering coefficient were measured. The Clauset-Newman-Moore
algorithm was applied and the resulting clusters compared to the real departments,
through the variation of information process. The results are summarised in this
section.

The model was initially tuned for the value of the residual probability, with 50% of
training data, neighbourhood 1 and the parameter a=4. The control value chosen
was the average degree, which had to be short of 10% of the real data. We found a
value of 4.0x10- for the residual probability of events to be adequate.

The real data showed that the average degree grows according to a power law of
0.593. For every run we calculated the average degree, the density of the network,
the average path length and the clustering coefficient. For all of these measures the
Clauset-Newman algorithm was run to indicate the value of maximal modularity of
the network.

The evolution of the performance of the simulation, according to the training
fraction of the real data, has been measured through the average degree (Figure 1),
the average path (Figure 2), the clustering coefficient (Figure 3), the modularity
(Figure 4), and finally the variation of information (Figure 5).
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Figure 1 — Average degree vs. training fraction and neighbourhood (v)

The results represented in Figure 1 show that the final average degree of the
simulation, for the case of low training fraction coupled with a neighbourhood (v)
greater than 1, is very different from the observed real data. The training fraction
equals 1 when the model uses exclusively real data. Also, the increase in
neighbourhood seems to tend to a limiting impact.

Average Path Length vs. Training fraction
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Figure 2 — Average path length vs. training fraction and neighbourhood (v)
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The training fraction seems not to have a strong influence on the final average path
length of the network, for a neighbourhood of 1, as the final results are almost
constant. On the other hand, the usage of a value greater than 1 for the
neighbourhood has a strong impact on the average degree, presenting simulation
results that are lower than expected. There is a limiting factor where, for high values
of v, the results tend to a limiting plateau.

Clustering Coef. vs. Training fraction
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Figure 3 — Clustering coefficient vs. training fraction and neighbourhood (v)

Measuring the clustering coefficient showed that the model with neighbourhood 1
presents low values for low training fractions. This was expected, as it corresponds
to a situation where connections are only possible with previously connected
agents. When the value of the social neighbourhood is increased (v=2), the results
show that even with small training fractions the model presents clustering values
similar to those of the real data. Curiously, an increase in the value of the social
neighbourhood has a negative effect on the coefficient clustering. This seems to
indicate that first-order neighbours and their alters are the most important agents
for the establishment of informal social networks.
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Modularity (Q) vs. Training fraction
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Figure 4 — Modularity vs. training fraction and neighbourhood (v)

Concerning the structure of the formed communities, it is remarkable that an
increase in the neighbourhood has a negative effect on the value of modularity. If
one thinks of communities as modules with higher edge density than the density of
inter-community edges, the increase of the social neighbourhood will allow border
nodes to have a higher probability of connecting agents from other communities,
and therefore increase the inter-community edge density. In terms of the training
fraction, even for 10% of training, the simulation still presents a structure (Q>0.3)
for v=1.

Figure 5 shows the normalised variation of information, plotted as a function of the
training fraction and for different social neighbourhoods (v). The horizontal lines
represent the values of the variation of information between clusters. The bottom
line represents the variation of information between the clustering produced by the
Clauset-Newman-Moore algorithm and the real departments of the university, while
the top line represents the variation of information of the clusters of a random
network, with the same department distribution and the same number of clusters as
the real network. The former represents the minimal distance, while the latter
represents the highest distance between two clusters. Figure 5 shows a very low
influence of social neighbourhood in terms of the final variation of information,
although the effect is more important for higher training fractions. The variation of
information decays linearly with the increase of the training fraction.
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Variation of Information (normalized) vs. training fraction and "social neighborhood"
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Figure 5 - Variation of Information for v=1...5 and training fraction 10%...90%

The modelling of the communication network formation showed that social
neighbourhood has a strong influence on the average path length. This influence is
remarkable in Figure 2, where for neighbourhood (v), greater than 1, the value of
the average path length significantly diminishes. On the clustering coefficient side, it
seems that the increase in neighbourhood for v>2 has a counter effect on clustering,
as the number of possible alters to whom the ego can connect is higher, not
producing immediate triangles as seen in Figure 3. On the other hand, Figure 4
shows that even for small training fractions the resulting network keeps its
structure. The effect of higher neighbourhood destroys the boundaries of
communities, as it increases the possibility that border members establish
connections to members of other communities.

The variation of information measurement of the results from the simulation is
shown in Figure 5, showing dependence on the training fraction that is used by the
simulation. The variation of information is maximal between the clusterings
obtained from low training fractions vs. the real departments. Also, the variation of
information is minimal for a small social neighbourhood. This is consistent with the
observed behaviour in modularity.

5. Conclusion and perspectives

This work shows the application of an information-based measure for quantifying
dynamics in communication networks. The clustering produced by the application
of a hierarchical algorithm is a macro-level structure. The dynamics of this structure
were analysed in terms of variation of information. A multi-agent based simulation
model was designed to represent the informal communication network in a
university. The model used real data to train and adjust its parameters to the
university population dynamics. The multi-agent modelling revealed that, even for
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small fractions of training data, the communication network still presented
significant structure, mainly for a social neighbourhood of one. The effect of this
social neighbourhood is more important for low training fractions and as a positive
effect in the value of the clustering coefficient for a small neighbourhood greater
than one. In fact, the establishment of the informal communication processes inside
the university presents some transitivity effect, from contacts of ego alters, but the
real value of this effect is still not totally clear. We conclude that there is at least a
qualitative influence of the social neighbourhood in the resulting network.

The use of the variation of information measure allows evaluating the distance
between the results of a multi-agent simulation and known real data. Figure 5
shows the clear dependence of variation of information upon different social
neighbourhoods and different training fractions.

In future research, the use of information-based measures will be extended to other
kinds of multi-agent based simulations, aiming to prove their generality.
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