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Abstract. We propose a descriptive 2D Hybrid Cellular Automaton model that 
simulates the growth behavior of a tissue with cancerous cells. We combine a 
set of hallmarks of cancer (Hanahan and Weinber, 2000) with the effect of 
acidification of the cell surroundings by the production of acid by tumorous 
cells and model some aspects of the communication in living tissues. The 
dynamics of the growth is determined to obey a power law. We conclude that 
the model predicts a cancer growth rate between the exponential Gompertzian 
growth and a laboratory evidence of linear growth.   
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1   Introduction 

The stronger you are you get to see more connections. The pieces and 
positions come alive with patterns. You start seeing possibilities in 
these patterns. (…) As you refine your analysis the more sharp your 
understanding of the position gets. The pieces are there standing and 
suddenly when you see the connections they become beautiful. 

Vishy Anand, (Chess Player, n.1 in FIDE rank); April, 24th 2007. 
 

There was an estimated 6,7 million people deaths in 2003 from cancer worldwide 
and 10,9 million more were diagnosed (Parkin et al., 2005). This numbers are 
expected to grow with time as populations get older in developing countries and better 
cancer treatments are promoting longer longevity. Until now cancer treatment has 
been generally limited to a specific form of the disease. Most cancer research has 
been focused in particular reactions and signal transduction pathways. This offer ways 
for therapy, but are specific to that form of cancer. At this level of detail each variety 
of cancer is unique and a complicated phenomenon.  



The cancer research is one field where most money is spent in today’s research. 
The understanding of the dynamics of formation and cancer growth can give 
researchers opportunities to try new prevention and treatment solutions. Computer 
simulations have been to used to study in silico some of the process that are thought 
to lead to the formation of cancerous masses and have attained good results in 
explaining some facts observed in vivo and in vitro tumors.  

We want to take an approach that can describe the problem in a meaningful way, 
but avoiding the caveats of going into a very demanding computational and 
reductionist approach. A reductionist approach would lead the simulation to a scale of 
molecular dynamics where there’s still much uncertainty how intra-cellular dynamics 
evolve. On the other way a holistic view of this problem would explain the global 
dynamics of cancer formation and growth in terms of some macroscale properties but 
would fail in pinpointing the micro causes. 

We believe that somewhere in the middle of this two views is possible to create a 
framework that is still computational feasible and that would help explain both some 
of the macroscale dynamics has some microscale mechanisms. 

This kind of framework would allow itself to be extended in the future in both 
directions, up and bottom, by the inclusion of refined submodels for those aspects of 
interest.  

In this work we are interested in answering some questions that might help 
understand this problematic. We defined a research hypothesis where we state that it 
is possible to use simulation tools in which we could integrate several levels of 
abstraction of the reality in a way that would allow us to have at least a qualitatively 
description of the dynamics of the process. We are interested in the level of 
communication between cells and how this chemical signaling can be conducted in 
silico. Another level of interest is that of the gene expression and eventually the 
mechanics of it. And in a third level we are interested in the macroscale analysis of 
the patterns that emerge in the cancerous tissue. 

This contribution demonstrates the possibility of using computer simulations to 
attain a descriptive model of the cancer formation and growth using very simple rules.  

The main body of this work is divided in three main blocks. We’ll start with a 
bibliographic review of some aspects that are pertinent to the simulation of biological 
systems and in particular to the simulation of cell tumors. Then we’ll introduce our 
proposed model, CellCom, with a descriptive methodology proposed by Grimm 
followed by the presentation of the experiments and results obtained. Finally we 
discuss the model presented and also focus on some topics that would be interesting 
to develop in further research. 



2   Bibliographic review. 

Overview 

 
Cellular systems and subsystems can be simulated at three different scales: the 

nanoscale, the mesoscale and the continuum or macroscale. At the level of the atoms 
and molecules we typically use molecular dynamics to model the behavior of 100's to 
1000's of discrete atoms over relatively short periods of time (10-10 to 10-9 s) and space 
(10-9m). Molecular dynamics methods, which treat the atoms and bonds in a semi-
classical manner, are fully deterministic and remarkably accurate over the short 
temporal and spatial scales that are normally simulated. This limits the number of 
molecules that can be simulated and therefore when it is needed to model at a 
macroscale we need to turn to ordinary (ODE) or partial (PDE) differential equations. 
This makes the model a continuum where molecules essential loose their discreteness 
and became infinitely small and numerous (Wishart 2004). But even at this continuum 
level it isn’t possible to describe every system in terms of differential equations, and 
not all are solvable. This is where a middle approach is needed. One that still captures 
the discrete aspects of molecules but allows for an upper analysis and modeling. This 
is where simulation incorporating different abstraction levels can help connecting the 
nanoscale and macroscale in the mesoscale of modeling. 

In order to understand the field of research it is necessary to review some aspects 
that need to be taken into account. Mainly we will address in the following sections 
the description of the cellular life-cycle, we’ll characterize some aspects of tumorous 
masses and it’s growth dynamics, we’ll refer other aspects like the fractality of the 
contour of growing tumors and the use of nanomachines that simulate molecular 
communication. Also we’ll end this section by reviewing some software programs 
and models that were developed to explain some aspects of this field of research. 
We’ll start by describing succinctly the cell life-cycle. 

Cell Life-Cycle 

The first step to understand the problem of tumor growth is look at the cell life 
cycle.  

A cell in an adult organism can be viewed as a steady-state system. The DNA is 
continuously read into mRNAs, which allow the production of proteins. As the 
proteins function they are also being degraded and replaced by new ones and the 
system is balanced and the cell neither grows, shrinks or changes its function. This 
static overview of the cell doesn’t give insights to its life cycle dynamic aspects 



The dynamics of a cell can best be understood by examining the course of its life. 
Each cell arises from the division of a parent cell into two daughter cells. The 
sequence of events that lead to this division is called the cell-cycle and has a major 
importance as it is the mechanism by which any type of cell grows and multiplies.  

Basically, the cell-cycle is composed of 4 steps in sequence that act as an internal 
clock for the cell life (Alberts et al. 1998): 

G1 phase – in this phase the cell checks to see if there are conditions to initiate 
DNA replication. It acts has a checkpoint to see if the cell has the size and 
environmental conditions to continue with the division process. In this phase the cell 
also verifies if the DNA is damaged. If the cell verifies that all conditions are met, 
then it will trigger the next phase where DNA multiplication occurs. 

S phase – in this phase the cell will start replicating it’s DNA. It is also called the 
synthesis phase and at it’s end will have a double stranded DNA. 

G2 phase – This phase acts as a checkpoint similar to G1. The cells checks to see if 
the DNA replication has ended correctly and checks if it’s size and environment of 
the cell allow it to enter the mitosis phase were actual division occurs. As in the G1 
phase, the cell has mechanisms to halt the progress of cellular division at this point 
waiting for the conditions to continue the process. These three phases are usually 
grouped and called the interphase. 

M phase – this phase is were the division of the cell occurs. The mitosis in itself is 
sequence of steps through which the division takes place. From the condensation of 
the chromosomes and formation of the mitotic spindles that will pull each pair of 
chromosomes to its spindle pole, to the division of the cytoplasm creating the two 
daughter cells, all occur in the M phase. 

 
It is a general rule that mammalian cells will multiply only if they are simulated to 

do so by signals from other cells. If deprived of such signals, the cell cycle arrests at a 
G1 checkpoint and enters the G0 state. G0 is a modified G1 state in which the cell-
cycle control system is partly dismantled (Alberts et al. 1998). 

 

 
Figure 1 – Cell Life Cycle 



Cells spend their life in one of two states depending if they are allowed to replicate 
or not. If they are in the quiescent state, they don’t reproduce and this state called G0. 
If they are allowed to replicate then they enter the G1 phase and will proceed through 
their cell-cycle up to the point where two daughter cells are formed from one parent 
cell. 

Tumor Growth 

How cancer grows and how it is initiated has been one field of great study by the 
medical community. We wont to go over an exhaustive analysis of what has been 
accomplished in recent years as it would reveal a daunting task as the number of 
publications and researches in this area is overwhelming. We will review some of the 
papers that we studied during the preparation for the construction of our model. This 
will give an insight of what is being done in tumor analysis and will be the grounds on 
which we made our proposition. 

 
 

Hallmarks of Cancer 

Hanahan and Weinberg (Hanahan and Weinberg, 2007) wrote a paper called “The 
Hallmarks of Cancer” where they stated that tumorigenesis in humans is a multistep 
process and that those steps reflect genetic alterations that drive the progressive 
transformation of normal human cells into highly malignant derivatives. From the 
many cancers diagnosed in humans they say that there’s an age-dependent incidence 
implicating four to seven rate-limiting, stochastic events. They state that “taken 
together, observations of human cancers and animal models argue that tumor 
development proceeds via a process formally analogous to Darwinian evolution, in 
which a succession of genetic changes, each conferring one or another type of growth 
advantage, leads to the progressive conversion of human cells into cancer cells”.  

They proposed that only six cellular alterations are essential to malignant growth. 
These six hallmarks are believed to be common to most human tumors. The 
phenotypic changes at the cellular level that are essential hallmarks are: unlimited 
mitosis, ignoring growth-inhibition signals, escaping dependence on external growth 
stimulation, the ability to recruit new vascular structures, modality and invasion and 
disabling the mechanisms that normally detect mutation and trigger apoptosis. To this 
six genetic instability is added has a factor that accounts for the high incidence of 
mutations on cancer cells (Abott et al., 2006). 

 
From the vast catalog of cancer cell genome types the authors proposed that the 

manifestation of six essential alterations in cell physiology will dictate malignant 
growth. These hallmarks are resumed in the following list: 

 
1) self-sufficiency in growth signals 



2) insensitivity to growth-inhibitory (anti-growth) signals 
3) evasion to programmed cell death (apoptosis) 
4) limitless replicative potential 
5) sustained angiogenesis 
6) tissue invasion and metastasis 

 
Figure 2 – Hallmarks of Cancer 

The authors also refer that the acquisition of this six capabilities during the course 
of tumor progression creates a dilemma as while evidence suggests that most of them 
are acquired directly or indirectly, through changes in cancer cells, the monitoring and 
repairing mechanisms in normal cells make this mutations rare. The genome 
maintenance system strive to ensure that DNA sequence information remains pristine, 
and the checking mechanisms would make tumor cell genomes highly unlikely to 
occur within the human life span. Yet, tumors do appear at a substantial frequency, 
making several authors state that tumor cells must acquire increased mutability in 
order for the process of tumor growth to be successful. The authors refer that from 
those systems capable of increasing cell mutability, the most prominent is the p53 
tumor suppressor protein, which in response to DNA damage, elicits either cell cycle 
arrest to allow DNA repair to take place or apoptosis if the damage is excessive. The 
authors say that is clear that the p53 signaling pathway is lost in most human cancers. 

This makes the hallmarks of cancer a set of seven instead of six manifestations, 
although six of might be considered a phenotypic manifestation of genome mutations 
and the seventh a multiplication factor that will increase the rate at which the first six 
will occur.  



Fractality and Growth Laws 

One interesting aspect of the tumor dynamics that has been studied by Brú et al. in 
2003, is that cell colonies are fractal, and a classical Euclidean geometry description 
of the growth contours is very difficult to provide. These authors did a fractal analysis 
of the nature colonies of 15 lines of cancer growing in vitro and as well 16 others 
growing in vivo and they concluded that all colonies had the same growth dynamics, 
which corresponds to the molecular beam epitaxy (MBE) universality class. They also 
calculated characteristic fractal dimensions for all of the lines of cancer. 

This meaning that the cell aggregates are characterized by 1) a linear growth rate in 
the sense that the term “linear” means that the colony radius grows linear with time, 
2) the constraint of growth activity to the outer border of the cell colony or tumor and 
3) diffusion at the colony surface of cells. This evidence is in contradiction with other 
models of cancer growth that state that the dynamics is characterized by a 
Gompertzian growth.  
 

Molecular Communication 

There's been some recent research in this field with its interdisciplinary scope 
ranging from nanotechnology, biotechnology to communication technology. 
Molecular communication is inspired by the observation that in biological systems, 
communication is typically done through molecules. Hiama et al. have studied 
molecular Communication in the attempt to apply these concepts to nanomachines 
communication. These machines are molecular scale objects that are capable of 
performing simple tasks such as actuation and sensing. According to Whitesides 
(Whitesides, 2001) there's two types of nanomachines: artificially created machines 
that mimic traditional machines, and nature made nanomachines, also called soft 
nanomachines which are found in biological systems.  

The most interesting aspect of the use of the nanomachines research in the context 
of molecular communication is that the authors defined a set of steps that must be 
present to make communication flow from a sender to a receiver. The proposed 
mechanisms might be considered as a submodel to implement some aspects of the 
virtual cell. 

Software Simulations 

We will now review some software packages that are used in cellular simulation 
and cancer growth modeling. 

SymCell (Wishart et al, 2004) 
 

This program is a dynamic cellular automaton. This means basically that agents are 
placed in one position and that they can assume a state from a predefined set of states 
and then change states according to a set of rules. Usually these rules represent some 



sort of environmental representation of the agent’s surroundings. The dynamic 
cellular automaton is one where its agents are not confined to a single spot in the 
lattice of those more traditional CAs, but can move around the lattice to simulate 
Brownian movement, diffusion, convection, or any other property that might be 
appropriate for the agent to have. 

Wishart et al., used this approach in their SymCell software, where the user can 
use it to simulate cellular and biochemical processes, through a DCA (dynamic 
cellular automaton) algorithm. They provide a simple user interface allowing the user 
to drag & drop elements into the simulation for which, the user must then introduce 
some parameters. 

The software is capable of implement some of the cellular characteristics:  
 

a) Small molecules. 
b) Membrane. 
c) Membrane proteins 
d) DNA molecules 
e) Genes 

 
The software allows the user to create interactions between these components in 

ways that mimic the behavior of real cells.  
After the creation of the components, the simulator will model the process and 

simulate it. Each step of the simulation represents 1 ms and the movable elements 
placed by the user can move in theirs Moore neighborhood. 

Also the simulator can use data in the Systems Biology Markup Language (SBML) 
witch allows the user to import data from available databases. 

This system has its virtues but also is problems. Modeling at a macroscale (at least 
at cellular level) implies that the discreet approach of the DCA doesn’t allow 
matching the atomic spatial complexity of something like an enzyme. Also these 
models can’t predict certain properties of the system, like molecular properties, and 
for those other method should be used. Those results can than be included in the 
DCA, but not the other way around. 

CancerSim (Abott et al. 2006) 
 

CancerSim implements the hallmarks of cancer described by Hanahan and 
Weinberg in the Cell magazine in 2000. The simulation consists of cells and a 
circulatory system, both of which grow according to their own rules. The model is 
built as a 3D cellular automaton where each place (cube) contains either one cell or an 
empty space, but where the vascular system may pass through that cube without 
restrictions. CancerSim is implemented in C++ and available under a free license and 
exist in several flavors of Unix, MacOS and Windows.  

In this model, the authors implemented the Hallmarks of cancer: self-sufficiency in 
growth signals, sustained angiogenesis, insensitivity to growth inhibitor signals, 
evasion to apoptosis, limitless replicative potential and genetic instability. They didn’t 
implement tissue invasion and metastasis. Although genetic instability isn’t 
considered one hallmark of cancer, evidence showed that in normal conditions cells 



wouldn’t have the many chances to convert to cancer cells during the life-span of 
human life. The authors state this genomic instability must therefore be present 
(Hanahan et al. 2000). The genomic instability is modeled in CancerSim as a switch 
in the pseudo-genome of the cell that will have a multiplying impact on the 
probability of occurrence of other mutations. 
 

Patel et al. 2001 
 

Patel et al. (Patel et al., 2001) have proposed a cellular automaton model of the 
early tumor growth and invasion. Their model proposes a hybrid cellular automaton 
that incorporates normal cells, tumor cells, necrotic space or empty space and a 
random network of native microvessels as the components of the state vector of each 
square in the lattice of the CA. The authors use a set of differential equations to model 
the diffusion of H+ and Glucose, being the former largely resulting from the tumor’s 
excessive reliance on anaerobic metabolism. In their paper they showed that high H+ 
ion formation is favorable to tumor production (but not to normal cells). However, for 
each pH there’s an optimal microvessel density for which growth and invasion is most 
successful. This leads to a local optimal concentration of acid for the tumor, but not 
for the normal cells. 

The model they presented is a NxN lattice of automaton elements each with a 
vector state and a rule-set governing their evolution. Each lattice element regardless 
of its state and occupation enforces a correspondence between automaton elements 
and physical cells comprising the tissue. This elements have a physical size of 
∆=20µm. The simulation is carried by setting up a random network of vascular cells 
in the model and then placing a group of 5 cells in the middle of the lattice. The 
simulation then performs according to a simple set of rules: 
 

a) If the automaton element is vacant or occupied by a micro vessel then he 
wont evolve directly, although in the case of the former it can evolve 
indirectly by he division of another cell. 

b) If the occupancy of the automaton is either a tumor or a normal cell then 
the concentrations of H+ and Glucose are considered and pH thresholds 
for each type of cell decide the evolution of this automaton element. 

c) If the cell survives because pH is above its threshold then it will be given 
opportunity do divide. Each cell will only survive in this step if the 
concentration of Glucose is above a certain value, and the division will 
only be successful if there’s a vacant cell in the vicinity.  

d) The remaining values of the state vector that are described by continuous 
properties are then updated by the solving of two differential equations. 

 
This model was written in C with simulations of lattices 100x100 and 200x200 (for 

selected parameters) and run for 40 generations on a DEC Alpha Unix workstation.  
The authors conclude that the H+ production by tumor cells in the early 

tumorigenesis, when only a few tumor cells exist, would be sufficient to significantly 
alter the environment, although the model showed that from a small number of tumor 



cells, the mass will develop into a clinically important malignancy if the clonal 
phenotype alters the local microenvironment so that it is hostile to normal cells. They 
affirm that this depends on the balance of the acid produced and the acid removed by 
the local blood flow. In this approach they examine the influence of vascularity and 
conclude that for each rate of acid production there is an optimal density of 
microvessels that facilitate the removal of excess acid in the system. 
 

Kansal et al. 2000 
 

“Simulated Brain Tumor Growth Dynamics Using a Three-dimensional Cellular 
Automaton” 

Kansal et al. (Kansal et.al, 2000) developed a three-dimensional model of brain 
cancer growth that using a small set of parameters show macroscopic behavior 
identical to those of real tumors, mainly the Gompertzian growth for cancers growing 
nearly three orders of magnitude in radius. Their model also predicts the composition 
and dynamics of the tumor at selected time points in agreement with medical 
literature.  This model presents some features that are worth mentioning: 

 
a) The ability of cells to divide is treated by redefining the transition 

between dividing and non-dividing cells, as the cells attempt to divide, 
they will search for sufficient space for the new cell, beginning with its 
neighbors and expanding outwards until they find an empty cell or 
nothing is found within the proliferation radius. If the cell attempts to 
divide but cannot find space it is turned into a non-proliferative cell 

b) The CA used is modeled in a 3D lattice constituted by Voronoi 
tessellation, and is isotropic in space avoiding the creation of artificial 
anisotropies possible with square or cubic lattices. The Voronoi lattice 
used in the model defined neighbors of a cell by those who share a 
common face.  

c) The lattice has a varying density sites (adaptive grid lattice) that allows 
small tumors to be simulated with greater accuracy an still allowing 
them to grow large in size (three orders of magnitude) 

 
This model allowed the authors to simulate the growth of small populations of 

about 1000 real cells to a fully developed tumor with 1011 cells. This number of cells 
requires great computational power and the simulations were run in an IBM SP2 
Parallel computer. 

This model idealized a tumor with as a spherical body consisting of several 
concentric shells. The inner core was composed of necrotic cells, which radius was a 
function of time. The next shell contained cells that where alive but in a quiescent 
state (G0 state in cell-cycle). The outer shell has the cells that are in an active state 
and can go therefore the natural cell life cycle (G1 S  G2 M). 



Comparison of previous models 

The use of bottom-up and/or top-down approaches in the modeling of cellular 
systems. 

 
Each approach as it's advantages and it's disadvantages. A top-down approach will 

allow the scientist with a valuable tool for generically describing the dynamics of a 
system, without going into much detail on how the particular components work. 
Those simulations mimic the overall behavior of the system, even if the rules 
underlying the behavior aren't mapped in the real system, although many times they 
have some sort of inspiration from the micro link. The top-down approach gains in 
generality but what it gains it looses in assertiveness as the models will be difficult to   
validate against real microlevel data, and will not have a defined field of application. 
On the other hand, this approach is particularly interesting as a tool to develop rapid 
conceptual frameworks of the problem in analysis and might macroscopically explain 
phenomenons for what the bottom-up approach still hasn't the power to explain. 

The bottom-up approach allows scientists to model the complex diseases such as 
cancer in a level and resolution that can predict the correct “how’s” and “why’s” of 
drug action on the tumors. This can't be done without a comprehensive knowledge at 
the molecular level. This bottom-up approach has it's trade off in the form of more 
computational power needed to run the simulations, better understanding of the 
underlying molecular interactions and components, and a bigger variety of actors 
present in the simulation. These kinds of approach are time consuming and resource 
demanding, due to the high number of freedom degrees that are present in the study 
system.  

These two different approaches reveal two pathways that are usable in the research 
of biological systems, and as the computational power needed is being made available 
by the industry, both pathways will end up converging somewhere in the middle. 

 
From the bibliographic research that we’ve conducted we can now resume the 

main characteristics of what we’ve observed in the following table: 
 

Table 1 – Mais aspects of the several approaches studied. 

 Main Characteristics 
Wishart et al. 2004 • Dynamic 2D cellular automaton 

• Not Cancer or Cellular Growth 
• Square Lattice 
• Drag & Drop Interface 
• Only intracellular dynamics 
• SBML databases 
• Doesn’t allow the prediction of properties 
• Java 

Abott et al. 2006 • 3D cellular automaton 
• Cube lattice 
• Implements the hallmarks of cancer 



 Main Characteristics 
• Extracellular dynamics 
• Simplified Intracellular dynamics 
• C++ / free license  

Patel et al. 2001 • Hybrid 2D Cellular Automaton 
• Influence of Glucose, H+  and 

Vascularization on Cancer growth 
• Differential equations used for Glucose 

and H+ diffusion 
• C / DEC Alpha Unix Workstation 

Kansal et al. 2000 • 3D Cellular Automaton 
• Voronoi Lattice 
• Brain Cancer (Specific) 
• IBM SP2 Parallel Computer (AIX) 
• 1.5 Million Lattices (minimum) 
• Large initial cell population 

 
 

From the models observed, its clear that mainly the development of models tend to 
use some form of cellular automaton. They aren’t pure CAs as they don’t limit each 
cell to a vector state where all combinations are known and a set of rules very well 
established that are the same for each and every cell. Usually they implement some 
sort of stochastic factor and also they use some sort of continuum mathematical 
description of the environment where cells live, mainly in the form of ordinary 
differential equations. 

From this table we also noticed that models tend to require high computational 
power. Exception made to the model presented by Wishart et al. although this is the 
only model that focuses entirely in the intracellular aspects of cellular dynamics 
although it doesn’t model cell colony growth. 

Different lattices are used in this modeled but it is noticed that researchers tend to 
prefer 3D environments as they mimic reality better.  
 

From the analysis of this works and taking into account the limitations of 
computational power, time and resources that we had for this study we opted to try to 
bring into a simulation the ideas of the Abott et al. model that implement a subset of 
the hallmarks of cancer and add to this model the ideas of acid production that were 
described by Patel et al. The ideas of this project complement something that lacks on 
the former, as it doesn’t implements the effect of the tumor cells in the environmental 
conditions. The production of acid acts as an inhibitor for cell growth, both normal 
and tumorous and therefore should be considered. The 3D modeling was discarded at 
this time as this extra layer of complexity in our model wouldn’t allow us to develop a 
fully functional model, or even analyze it properly. The aim of our model was then to 
attempt to make a descriptive representation of the cancer growth phenomenon and 
evaluate the viability of using cellular automaton to mimic the real behavior of cancer 
growth. 



3   CellCom: Model Proposal 

It is our intention to produce a model that can describe the mechanism of tumor 
growth through the implementation of what is considered consensual in the formation 
of cancer cells and it’s growth. From the previous readings we’ve outlined a 
description of the model that would incorporate the hallmarks of cancer with the 
evidence that cancer cells produce acid that will change the surroundings and affect 
the dynamics of normal and tumorous cells. We also included some aspects that 
interest us in respect to communication detection and communication patterns. In 
biological systems communication is processed by chemical signals and can broadly 
be characterized in four groups: Long distance communication includes point to point 
communication as for example neuronal signals are sent through to any point of the 
organism from the brain, and single to multi or multi to multi communication in the 
form of hormones that are segregated by glandules and then propagated in the body 
by the vascular system. Short range communication is also divided in two different 
aspects of communication, as it can contact-dependent, meaning that cells will only 
signal other cells they have physical contact with, or it can be short-range diffusion 
signaling as chemical signals will only affect those in the vicinity of the cell. In our 
model we want to model some of this aspects mainly we will include contact-
dependent communication in the way cells can perform mitosis, we will have short 
range diffusion communication in the terms that cancer cells produce acid that will 
subsequently diffuse locally affecting both normal cells and tumor cells. We also 
implement a pseudo-long distance in the form of nutrients being fed by the vascular 
system. 

We programmed a model of cell communication where cells are located in a 2D 
lattice. There positions will be fixed and cells wont have movement. The signals were 
modeled not as independent agents, but as properties of each lattice place, as the 
scales between cells and signals are several orders of magnitude different. 

From the previous readings we had the idea of implementing some sort of 
molecular communication mechanism within the scope of nanomachines presented by 
Hyama et al. but due to the different scales at which cells and molecules operate this 
idea had to be discarded and was pushed to further developments. 

 
Next, we present the description of model in detail, according to the protocol 

proposed by Grimm et al. (2006) called ODD (Overview, Design concepts, and 
Details). 



Overview, Design Concepts and Details 

Overview 

Purpose 
The purpose of the model CellCom is to illustrate how tumorous cells are 

generated from the genetic mutations that occur in normal cells, and to show how 
these mutations are affected by chemical signals from it’s environment. Also the 
model will verify that even in a 2D cellular automaton that implements a set of 
properties and methods from biology, it is possible to test the dynamics of tumor 
formation and the overall tumor mass growth according to the literature models. 

State Variables and Scales 
The model comprises four levels that affect its overall behavior: Nutrients space, 

Acid space, Vascular space and Cell space.  
Cells are described by a pseudo genome of phenotypic manifestations. As we 

consider the hallmarks of cancer to be the result of gene mutations, each cell has a 
pseudo genome that has equi-probable “genes” that will activate each of those 
hallmarks. Also this genome includes one extra gene to take into account genetic 
instability and this manifestation is also modeled has if it was induced by a gene 
mutation. Each cell is initialized with a copy of its parent cell genome. At this time 
the metastasis gene will not be modeled, as the mechanisms that lead to it are still not 
well understood. It would also require a much vast space, which is several orders of 
magnitude greater than the tumorous formation here studied.  

The vascular system will be responsible for the distribution of nutrients across the 
tissue. At the initialization process only one vascular cell will be created in the same 
place has a normal cell. Then through the angiogenesis process triggered by a 
mutation in cells, the vascular system will be called to multiply and grow into those 
cells that have mutated. 

The nutrients space only has one variable that represents the concentration of 
nutrients in each specific location. This concentration is an overall measure of all the 
nutrients existent in this place. We can imagine this entity to mimic the glucose 
concentration at each place and we choose to implement a serum concentration that 
can’t go under 2.5 mM to allow cells to avoid hypoglycemic effects (Patel et al., 
2001) 

The acid space is similar to the nutrient space as it represents the acidity of the 
medium. The model is initialized admitting a pH of 7.4 in all cells. As tumor cells 
start producing acid then a simple model of diffusion will transport acid from high 
concentration cells to less concentrated ones. 

We had to define two constant rates, kRate and hRate. kRate takes into account the 
consumption of nutrients by cells and hRate the production of acid by tumorous cells 



due to their anaerobic metabolism. The kRate for tumorous cells is a ten fold of the 
kRate for the normal cells and therefore we didn’t implement a separate constant.  
 

Table 2 – Parameters of the model and their default values. 

Parameter Description Value 
ProbCompeteNeighbor When a Cell has the Insensitivity to 

Growth-Signals Gene activated it’s 
daughter will compete with a neighbor and 
have this probability of success. 

0.4 

ProbDetectionDamageCells This is the probability of detection that a 
gene is mutated. This check is made on G2 
phase of the cell life-cycle. 

0.97 

ProbNormalGeneMutation All genes have this equal probability of 
undergoing mutation in S phase of the cell 
life-cycle. 

0.01 

ResidualApoptosisProbability This is the probability that a cell will have 
to go under Apoptosis that represents other 
factors not accounted by the model. 

0.1 

TelomereSize: This is the number of divisions a cell can 
undergo before dieing. Cancer cells that 
have the Limitless Replicative Potential 
gene activated will ignore this and live 
forever. 

10 

VascularNutrients This is the concentration in mM that the 
vascular system is capable of distributing 
to the surroundings of each cell to which it 
is connected. 

5 

WorldXSize Dimension of the lattice in X 150 
WorldYSize Dimension of the lattice in Y 150 
 
 
 

Process Overview and Scheduling 
The model evolves in a discrete step manner, with each step corresponding to a 

possible complete life-cycle of the cell. We say “possible” because as we’ve seen, it is 
possible for a cell to enter a non-mitotic state G0 where it isn’t dividing. As cells life 
cycle can have very different times for their life-cycles we can’t map the time step to 
a specific amount of time. Some cells might have a life-cycle of 12h but others will 
have longer life-cycles or shorter, depending on the functions they perform in the 
organism. In our case we assume that each step of the simulation holds the time of a 
complete life-cycle. In each step, the model performs the following tasks: 



 
Figure 3 – Model State Diagram 

The model at each step starts by ordering the vascular system to add nutrients to 
the tissue (state 1) and remove the acid produced by tumorous cells (state 2) then the 
model implements the diffusion models for acid and nutrients (State 3 and 4). At State 
4 the preparation of the scenario where cells act is ready and the model orders each 
cell to perform the tasks in the step as we can see in the following figure. 
 



 
Figure 4 – Cell “Pseudo-Step” Diagram  

When cells are ordered to perform their steps, they start by checking (“sensing”) 
the environment for acidity and nutrients. Also they check to see if they can replicate 
by checking if it’s telomere size is above 0. If the tests fail the cell enter apoptosis and 
will leave a blank space for other cells to grow. After that cells will remove a quantity 
of nutrients from the nutrient space and will check if they can enter the cell life-cycle. 
If they aren’t allowed to enter the life-cycle, they will rest in a quiescent state G0 and 
then the step will end. If they can enter the normal life-cycle then they will go through 
the phases G1, S and G2. After this they will be checked for mutations in the genome 
and if mutations are detected then the cell will undergo apoptosis. Only if the cell 
escapes mutation detection will it then be allowed to go into the mitosis phase (M). 



After this step all cells will eventually suffer apoptosis with a probability defined by 
the user.  

Design Concepts 

Genome 
Although the hallmarks of cancer are the expression of gene mutations, they aren’t 

mapped in reality to particular singular genes. Each might be the result of several 
mutations in real cancer tumors. As this genes aren’t yet fully discovered and 
understood in our model we’ve decided to include a “genome” that represents each of 
the hallmarks of cancer in a manner that each “gene” represents one of the hallmarks, 
each one having an equal probability of mutating. Further more, the evidence of 
genetic instability isn’t in itself a gene mutation, but a result of multiple mutations 
observed in real cancer masses.  In this model the genetic instability is also modeled 
as a gene that will affect the probability of mutation of other cells by a factor of 10. 
This leads to a model genome that is no more than a vector of 6 integers which value 
will determine if a particular gene is mutated or not. As we won’t model metastasis 
mutation this vector is composed of 5 hallmarks plus genetic instability. 

Emergence 
The tissue dynamics emerge from the behavior of the individual cells. Each cell 

has it’s own life-cycle and rules on how each cell acts according to it’s environment.  

Adaptation 
Cells can go into a quiescent state if their environment changes. If the pHs of the 

cell lattice falls bellow a certain value then the cell enters the G0 phase. This 
threshold is 7.1 for normal cells and 6.4 for cancerous cells. Cells that have the induce 
angiogenesis mutation also can send requests for vascular cells to proliferate in their 
direction if the nutrients in the lattice fall under a minimum value. 

Sensing 
Cells sense their environment in the form of chemical signals. In this model cells 

perceive nutrients concentration, pH and growth inhibitors.  

Interaction 
Cells act with each other by detecting the composition of the lattice they occupy. 

This can be nutrients or pH or the presence of other cells. Further, cancer cells can 
induce angiogenesis in the vascular system interacting at a longer distance than 
normal cells. Also, tumorous cells will stochastically compete with its neighbors for 
the occupancy of lattice locations.  

Stochasticity 



The model dynamics use several stochastic values to determine how cells will act. 
This is due to the fact that the CA isn’t governed by a set of rules that respond in the 
same manner to a repetition of the same environment. Instead, the cell will 
probabilistic act in reaction to their surroundings. The features that require 
stochasticity values are defined by probabilities of occurrence and are defined and can 
be controlled by the user in the table of parameters.   

Observation 
The data is collected in tabular text files with the number of cancerous cells over 

time. Also graphs are produced that describe the percentage of cells with different 
mutations and also percentages of the number of mutations. 
 

Details 

Initialization 
 

The model is initialized by the creation of a 2D NxN lattice and by the creation of 
the state vectors that will old information regarding nutrients concentration and acid 
concentration. At the beginning nutrients will be 0.0 at each location and the pH will 
be 7.4 for all locations. 

Then one natural cell is created in the center of this lattice with a genome that has 
no mutations. At the same place one vascular cell is created and the initial quantity of 
nutrients is placed in this location. The vascular system cells can coexist with other 
cell types in the same lattice space, as they are considered independent. 

Input 

Nutrients Update 
As the Cells in the model go through every step of their life, they have to consume 

resources. In our model resources are called nutrients and they are updated at each 
step of the simulation. The idea that we implemented in this model is that the 
concentration of nutrients at each vascular cell will always be constant. The idea is 
that the blood vessel will be able to transport nutrients to all microvessels equally 
without being perturbed by the size of the vascular system in the model. After the 
Nutrients Update they will be diffused by a simple diffusion mechanism discussed in 
the submodels section.  

Acid Removal 
Acid production is also removed by the vascular system. In our model the acid 

produced by cancer cells will diffuse by the same simple mechanism used by 
nutrients. At each step the vascular system will remove the excess acid in that location 



allowing the diffusion of high acid concentrations towards the vascular system to 
removal.  

Submodels 
 

Diffusion Model for Nutrients 
In a steady state system, a Fick Law describes diffusion of a compound in a 

solution and the diffusion flux is related to a diffusion coefficient D that is 
characteristic of the species in question and proportional to the gradient of 
concentration that traverses the control volume. This relation as the following form 
for a one-dimensional control volume: 
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This approach would lead us to have to perform a multitude of calculations 
including the integration of this equation on the entire discrete space demanding more 
power from the computational level and making the model to make some assumptions 
on frontier conditions. Therefore we tried a different approach to simulate the 
diffusion of nutrients. Once any perturbation in concentration would form a local 
gradient of concentration with it’s neighbors, we’d assume that at each time step a 
locally steady-state would be achieved. This meant that at each step for each position 
in the lattice the step+1 concentration would be calculated as the cell concentration 
summed with the concentrations in the Moore neighbors cells and then averaged. This 
would make nutrients diffuse locally without the need to perform more complicate 
calculations. 
 

Diffusion Model for H+  
The acid diffusion is implemented as in the nutrients space, with a small 

difference. The local steady state isn’t achieved in every step but instead it is assumed 
that it would be achieved only after a finite number of steps (the model uses 5 time 
steps). This model means that the resulting increase or decrease of acid concentration 
will be only 20% of what it would if the diffusion was locally steady-state at each 
step. 

Vascular Growth Model 
The vascular system grows in response to cells that have the sustained 

angiogenesis mutation. In such cases if the mutated cell has a low concentration of 
nutrients surrounding it, it will send a signal to the nearest vascular cell calling them 
to replicate in it’s direction. The vascular cell then calculates the direction toward the 
signal origin and one new vascular cell is created in it’s Moore neighborhood only if 
that place is empty (of vascular cells) and it hasn’t a vascular cell in that location 
Moore neighborhood other than it’s parent.  Although this allows, in some cases, the 



expansion of the vascular system from the trunk instead the leafs it creates structures 
that can somehow mimic the vascular system of real tissues. 

Growth-Inhibitors Model. 
We’ve implemented growth inhibitors by contact dependent signals. This means 

that a cell will enter G0 phase when all it’s 8 surrounding lattice places are occupied. 
Normal cells won’t go into their life-cycle if the count off cell in the Moore 
neighborhood is 8. Cells that have the insensitivity to growth-inhibitory mutation can 
escape growth inhibitors and will enter the G1 phase undergoing subsequent 
replication. Then the daughter cell will compete with one of the neighbors with a 
probability defined by the ProbCompeteNeighbor parameter. 

Gompertzian Growth 
The Gompertzian Growth is a population growth expression that is an exponential 

with a constant exponential. It assumes the form: 
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Where A and B are equation parameters. 
 

4   Experimentation and Results 

In the experimentation of the model we’ve decided that we needed to explore the 
space of possibilities in a way that would make the model behave as closely as 
possible to the real understanding of how tumors grow. For that we’ve designed a set 
of experiments to search for local zones where tumor growth would seam similar to 
real tumor growth.  

The proposed model was first run with a broad range of parameters to find local 
zones of interest in the space of solutions. After those local spaces have been 
identified the simulation was then run in a batch of tests in that local zones to verify 
that the outcome of the results where indeed due to the local zone parameters, and not 
from some stochastic behavior in one particular run.  

As the model has some stochastic behavior in it’s dynamics, sometimes the initial 
cells would mutate and would be detected rapidly. This would make those few cells 
enter apoptosis and the simulation would stop early. We’ve defined that for a run to 
be considered successful it would have to produce a tissue (tumorous or not) that 
would grow to the lattice boundaries or that would run for 2000 steps.  Runs that 
didn’t comply with this criteria where discarded. 

The next figure shows the result of one of those runs. 



 
Figure 5 – Example of one model run. 

In this figure we can see the all system modeled at the end of a run. The figure is 
composed of 4 layers that superimpose the cell space, the acid space, the nutrients 
space and the vascular system. For a better understanding of the results, next we 
present this four layer in a separate way. 

 

 
Figure 6 – Cell Space Layer 

This figure represents the fully developed cancer cells in Blue. Pink cells are cells 
that had some kind of mutation but didn’t present all hallmarks of cancer. It is also 
visible that in the center region we can observe empty spaces because of acid 
concentration in this zones being higher then the threshold to sustain the existence of 
cells. 

 



 
Figure 7 – Acidity Space 

In this figure dark zones are more acid than blue zones. As the cancer growths 
inner zones tend to be more acid and that lead to the observed necrosis in figure 6. We 
can also observe that the vascular system, responsible for removing acid, is detected 
by the formed pattern because those zones have a higher pH (lower acidity). 

 

 
Figure 8 – Nutrients Space 

As the vascular system develops due to the sustained angiogenesis mutation 
nutrients diffuse to all the tissue. This figures shows that in this set of parameters the 
cells are fed with sufficient nutrients. 

 



 
Figure 9 – Vascular Space 

The vascular space shows that although it doesn’t grow with a mapping to real 
vascular systems, as a new branch can emerge from any point at the tree and not just 
the leafs, it still produces natural-looking fractal-like structures that emerge 
endogenously. The pattern observed in this layer is also observed in the acidity layer 
as the vascular space is also responsible for removing acid from the tissue. 

  
From the initial analysis we’ve defined a set of parameters that were then run in a 

batch process. These were the parameters described in table 2. The model was run 53 
times and from this 6 where discarded and 47 used for further analysis. From this 47 
runs we obtained the following statistics: 

 

Table 3 – Statistics for the 47 runs. 

  Average StdDev 
Number of Cancer Cells 5869 2833 
Ticks 732 342 

 
The representation of the runs in a graph indicates that the appearance of tumorous 

cells is sparse and probably is due to stochasticity of the model.  
 



 
Figure 10 – Number of cancer cells on all 47 runs. 

From the previous figure we can observe that although the emergence of tumorous 
cells is randomly sparse, the cancer growth of each run follows a similar growth. This 
fact leads us to discard the ticks where no cancer was observed in order to analyze the 
dynamics of the growth in a comparable manner. After representation of the 47 runs 
in a log-log graph we’ve ended obtaining the following representation: 
 

 
Figure 11 – log-log graph of the 47 runs. 

The slope of the curves in this log-log figure is an indicator that the runs behave in 
a power law of the form: 
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From the previous figure we can see that the cancer growth is ruled in a two 
different process. While the number of cancer cells is small, (under 10) the growth is 



approximately linear, but then the growth assumes a power law growth. The b 
parameter determines the slope of the log-log graph and as been calculated for the 47 
parameters. We’ve calculated a value of 2,19 with a standard deviation of 0,21 for the 
exponent b. The a parameter is a factor of scale that we’ve found to be 0,42 with a 
standard deviation of 0,32. This leads to the following equation with a confidence 
interval of 95%: 

! 

y = (0.42 ± 0.64) " x
2.19±0.42  (4) 

The error in the a parameter means that there’s a great dispersion of values. On the 
other hand the power parameter as a smaller error meaning that the behavior of the 
growth is very similar for the different runs. 

 These values show an interesting aspect of the dynamics of tumor growth in this 
model. The growth doesn’t behave in a Gompertzian way as it was verified by some 
authors and it also doesn’t grow linear as in the study of Brú et al., falling somewhere 
in between these two boundaries. This indicates that the inclusion of acidity in the 
model decreases the rate of growth but by itself might not be sufficient to explain the 
observed growths in in vivo and in vitro situations. It is also possible that the set of 
parameters used conditioned the results and other local zones of interest in the space 
of solutions, might need to be explored. 

 

5   Discussion  

We’ve modeled the growth of a tumorous tissue in silico using a hybrid cellular 
automaton. This differs from the traditional cellular automata by the inclusion of 
stochasticity ruled by probabilities that the user can define. The traditional cellular 
automata models use a very well defined set of rules and states that each agent can be 
in, usually in a reactive manner to the environment. In our case our agents are reactive 
to the environment but the decision process is stochastic in some aspects. Also in 
traditional CA all lattice places have those set of rules and states. In our approach the 
lattice is empty and agents are placed according to the dynamics of the model and 
only then they are part of the CA. Also if conditions for apoptosis are present, agents 
can be removed from the lattice. 

This work showed that it is possible to achieve some descriptive understanding of 
the cancer growth, although the results on the dynamics fall between the models of 
Gompertzian growth and linear growth. We’ve found that in this case a power law 
describes the growth more appropriately. This implies that further research must be 
done in the mechanisms of the model and we’ve must then analyze some aspects that 
we think are pertinent. First, we need to do a scale analysis to ensure that the power 
law is maintained through a bigger environment. Secondly, we must investigate other 
zones of interest in the space of parameters. Thirdly, we must reflect if the 2D 
constrains in space are responsible for the observed dynamics as real tumors grow in 
3D.  

Also the implementation of a CA model as the base for the simulation has it’s 
limitations, as it implies that discrete values occupy each lattice position. This 



discontinuity could be eliminated if some aspects of the CA would be modeled by 
differential equations with certain boundary conditions. This would increase the 
computational requirements for this model. Also the use of a 2D lattice might be 
responsible for the divergence between the power law observed and the other two 
models usually described in literature. Further work should include this aspect into 
account. 

Our approach showed that with simple mechanisms to describe basic phenomena, 
the simulation could mimic, at least in a qualitatively manner, the real process of 
cancer growth.  

We believe that the approach we took has a descriptive value and shows that the 
techniques used can be employed in practical cases of interest for the scientific 
community.  
 
 

 

6   Further Research 

This study presented a general overview how methodologies used in the field of 
complexity sciences can be applied to biology and particularly how cellular automata 
can be extended to show some insights on how biological systems evolve. Although 
this work showed that is possible to model cancer growth by these methodologies, 
further research should be done in ways that could improve the acceptance of these 
methodologies in this field and to achieve a greater quantitative understanding of the 
dynamics of tumor growth. 

This model assumes that the cells live in a 2D tissue. This is obviously a limitation 
that the reality doesn’t have. Further research should include a 3D lattice to 
investigate this problem, as the growth rate observed might be a result of a 2D 
geometry. 

Research in different topologies of the lattice should be considered. Cells aren’t 
squares in reality and other topologies should be considered. Voronoi spaces could be 
implemented as a solution. This Voronoi cells could me modeled in a 2D space or in a 
3D.  

This model doesn’t explain the inner cell mechanisms as it pretends to replicate 
macroscopic phenotypic events. This model assumes for example, that induced 
angiogenesis is controlled by a single gene of our hypothetical genome. In reality 
angiogenesis is regulated by a variety of signals. Therefore future research should 
include some micro models of the pathways that produce these signals. Also chemical 
signaling in this model is considered instantaneous, which isn’t verified in reality. 
Some sort of transport mechanism should be considered, probably with the 
application of concepts developed in the nanomachines fields.  

Another aspect that should be considered in future studies is that in our model all 
phenotype switches are equal probable. That isn’t realistic as some phenotypic 
manifestations are a cause of more gene mutations than others. Also the mapping of a 
phenotype manifestation to a single gene isn’t exact and further research should be 



done to allow the inclusion of other genes in the model genome, and also to 
investigate the part of dumb DNA in the process.  

Although our genes are equi-probable making all mutation sequences possible in 
the formation of cancer cells, further research should include mechanisms to detect 
which mutation sequences are more prevalent. Also the mechanisms at the several 
levels of abstraction that would be implemented should be chosen to mimic reality to 
the possible extent allowing a more approximate mapping between the model and 
reality. 

The modeling of the vascular system in our model is very simple, allowing the 
growth of the capillaries from the nearest segment. The branches can therefore be 
formed from any segment of the vascular system and not just from the leaves, which 
is a departure from reality. In futures implementations this should be addressed 
allowing representing the vascular system as a network. This should allow further 
research on the way the angiogenesis is controlled by tumor cells. 
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